In a key advancement for hypersonic technology, China has completed a successful test flight of its Feitian 2 hypersonic vehicle in northwestern China. The test demonstrated the vehicle’s ability to switch between different propulsion modes during flight, a major challenge in the development of hypersonic systems.
Developed by Northwestern Polytechnical University ( NPU) with support from the Shaanxi Province Aerospace and Astronautics Propulsion Research Institute, Feitian 2 builds on the earlier Feitian 1, which flew in July 2022. The latest flight marks progress in rocket-based combined cycle (RBCC) engine technology and offers valuable data for further research in high-speed propulsion and aerodynamics.
Feitian 2’s multi-mode propulsion capability
The key feature of Feitian 2 is its RBCC engine, powered by a mix of kerosene and hydrogen peroxide. Unlike conventional hypersonic vehicles that use cryogenic fuels like liquid oxygen, Feitian 2 uses atmospheric oxygen for part of its flight, reducing the need for onboard oxidizers and improving fuel efficiency.
The flight successfully showed a smooth switch from ejector mode, where rockets provide thrust at take-off, to ramjet mode, where the engine uses air-breathing propulsion. This transition is considered critical for sustained hypersonic flight. The engine also demonstrated variable-geometry intake capability, allowing it to control airflow in real time for improved performance at different speeds and altitudes.
Design improvements and flight autonomy
Feitian 2 includes several upgrades over its earlier version. It has larger tail fins and new wings near the rocket head. These additions help improve stability and control at high speeds and altitudes.
The test also confirmed that Feitian 2 can fly autonomously. It adjusted its angle of attack during flight based on the mission’s needs and the surrounding conditions. This ability is expected to be important for future unmanned hypersonic systems used in both military and scientific missions.
Alternative propellants and engine design
Feitian 2’s use of a kerosene–hydrogen peroxide mix is a shift away from traditional cryogenic fuels. While kerosene has less energy than liquid hydrogen, it is easier to store and handle. This makes the vehicle design simpler and reduces the need for heavy cooling systems.
Feitian 1 had already shown that kerosene could work in hypersonic engines. Feitian 2 adds hydrogen peroxide as an oxidizer, cutting weight and keeping thrust stable. This fuel approach could influence how future hypersonic vehicles are built and operated.
Strategic and global implications
The Feitian 2 test flight puts China in a strong position in the international race for hypersonic technology. The vehicle’s ability to change propulsion modes mid-flight, along with its autonomous systems and airflow control, is a major technical achievement.
These developments could support both defence and civilian uses, including fast transport and rapid-response platforms.
Developed by Northwestern Polytechnical University ( NPU) with support from the Shaanxi Province Aerospace and Astronautics Propulsion Research Institute, Feitian 2 builds on the earlier Feitian 1, which flew in July 2022. The latest flight marks progress in rocket-based combined cycle (RBCC) engine technology and offers valuable data for further research in high-speed propulsion and aerodynamics.
Feitian 2’s multi-mode propulsion capability
The key feature of Feitian 2 is its RBCC engine, powered by a mix of kerosene and hydrogen peroxide. Unlike conventional hypersonic vehicles that use cryogenic fuels like liquid oxygen, Feitian 2 uses atmospheric oxygen for part of its flight, reducing the need for onboard oxidizers and improving fuel efficiency.
The flight successfully showed a smooth switch from ejector mode, where rockets provide thrust at take-off, to ramjet mode, where the engine uses air-breathing propulsion. This transition is considered critical for sustained hypersonic flight. The engine also demonstrated variable-geometry intake capability, allowing it to control airflow in real time for improved performance at different speeds and altitudes.
Design improvements and flight autonomy
Feitian 2 includes several upgrades over its earlier version. It has larger tail fins and new wings near the rocket head. These additions help improve stability and control at high speeds and altitudes.
The test also confirmed that Feitian 2 can fly autonomously. It adjusted its angle of attack during flight based on the mission’s needs and the surrounding conditions. This ability is expected to be important for future unmanned hypersonic systems used in both military and scientific missions.
Alternative propellants and engine design
Feitian 2’s use of a kerosene–hydrogen peroxide mix is a shift away from traditional cryogenic fuels. While kerosene has less energy than liquid hydrogen, it is easier to store and handle. This makes the vehicle design simpler and reduces the need for heavy cooling systems.
Feitian 1 had already shown that kerosene could work in hypersonic engines. Feitian 2 adds hydrogen peroxide as an oxidizer, cutting weight and keeping thrust stable. This fuel approach could influence how future hypersonic vehicles are built and operated.
Strategic and global implications
The Feitian 2 test flight puts China in a strong position in the international race for hypersonic technology. The vehicle’s ability to change propulsion modes mid-flight, along with its autonomous systems and airflow control, is a major technical achievement.
These developments could support both defence and civilian uses, including fast transport and rapid-response platforms.
You may also like
Tamil Nadu custodial death: Sivagangai case handed over to CBI; CM Stalin cites transparency behind the move
Man left without paying at Sharjah Airport: What followed was unexpected
22-yr-old posed as IIT Bombay student, lived on campus for weeks
Wimbledon star was so nervous she had 'little accident' on way to first-round match
Schoolboy, 15, fatally stabbed after online argument escalates into violence